# Autoxidation of Uranium(V). Catalysis and Inhibition by Copper Ions

# Andreja Bakac\* and James H. Espenson

Ames Laboratory and Chemistry Department, Iowa State University, Ames, Iowa 50011

Received December 14, 1994<sup>®</sup>

The autoxidation of  $UO_2^+$  in acidic aqueous solutions yields  $UO_2^{2+}$  and  $H_2O_2$  as products. The initial step occurs with a rate constant  $k_U = 31.4 \text{ M}^{-1} \text{ s}^{-1}$ . The reaction is catalyzed by aquacopper(II) ions, owing to the reaction between  $Cu^{2+}$  and  $UO_2^+$  ( $k = 915 \text{ M}^{-1} \text{ s}^{-1}$ ) yielding  $Cu^+$ , which is rapidly reoxidized by  $O_2$ .  $Cu^{2+}$  also reacts with an intermediate produced in the direct reaction of  $UO_2^+$  and  $O_2$ , and the combined effects of  $Cu^{2+}$  as catalyst and scavenger lead to an unusual dependence of the observed rate constant on [ $Cu^{2+}$ ]. The role of superoxouranium-(VI) and  $HO_2^+$  as reaction intermediates is discussed.

# Introduction

Environmental considerations and the need to conserve energy have made it a high priority to redesign many of the existing industrial processes and create new ones. The use of (sun) light as an energy source would provide a highly desirable alternative to the burning of fossil fuels.

Photochemically-driven oxidations using  $O_2$  and/or  $H_2O_2$  as oxidants are relevant to both the protection of the environment and conservation of fossil fuels.  $O_2$  and  $H_2O_2$  are readily available and yield water as the ultimate oxidant-derived product, thus eliminating the problem of waste disposal. However, the reactivity of  $O_2$  and  $H_2O_2$  toward many relevant substrates is low, and efficient catalysts are required to bring the reaction rates into a useful range.

One possibility for a photocatalytic oxidation of a substrate with molecular oxygen is shown in Scheme 1, where cat stands for catalyst.

# Scheme 1

$$\operatorname{cat} + h\nu \rightarrow \operatorname{*cat}$$
 (I-1)

\*cat + substrate  $\rightarrow$  reduced cat + oxidized substrate (I-2)

reduced cat 
$$\xrightarrow{O_2}$$
 cat (I-3)

In order for the scheme to work, the excited state of the catalyst, \*cat, has to be strongly oxidizing and sufficiently longlived to engage in bimolecular reactions with substrates. To ensure high quantum yields for the product formation, the excited state should not be quenched by  $O_2$ . Furthermore, the reoxidation of the reduced catalyst by  $O_2$  has to be fast and quantitative.

Visible light photolysis of the aquauranyl(VI) ion,  $UO_2^{2+}$ , generates an excited state that is long-lived, strongly oxidizing  $(E^{\circ} = 2.6 \text{ V})$  and reactive toward a large number of organic materials.<sup>1,2</sup> \* $UO_2^{2+}$  is also strongly luminescent and unreactive toward O<sub>2</sub>. It would thus appear that  $UO_2^{2+}$  may be a good candidate for a photooxygenation catalyst, according to Scheme 2 and using 2-PrOH as a representative reducing substrate. Reaction II-2 has been shown to yield C-centered radicals as written.<sup>3-5</sup> Reaction II-3 is a complex, multistep process; however the chemistry involved is well understood.<sup>6</sup>

## Scheme 2

$$\mathrm{UO_2}^{2^+} + h\nu \text{ (visible)} \rightarrow \mathrm{*UO_2}^{2^+}$$
 (II-1)

$$*UO_2^{2+} + (CH_3)_2CHOH \rightarrow UO_2^{+} + C(CH_3)_2OH + H^+$$
(II-2)

$$^{\circ}C(CH_3)_2OH + O_2 \rightarrow products$$
 (II-3)

$$\mathrm{UO_2}^+ \xrightarrow{\mathrm{O_2}} \mathrm{UO_2}^{2+}$$
 (II-4)

The only unknown in Scheme 2 is the final step that converts  $UO_2^+$  back to  $UO_2^{2+}$  and closes the catalytic cycle. We thus decided to explore the kinetics and mechanism of autoxidation of  $UO_2^+$ , which we recently found to be long-lived in a limited range of concentrations ( $\leq 1$  mM) and pH (2–3).<sup>7</sup>

### **Experimental Section**

Spectral and kinetic data were collected by use of a Shimadzu 3100 spectrophotometer. Fast reactions were monitored by laser flash photolysis using the flashlamp-pumped dye laser (Phasar) and a Nd-YAG (Applied Photophysics) laser system, which were described in detail earlier.<sup>8.9</sup>

Some of the  $UO_2^{2+}$  solutions were available from our previous work,<sup>7</sup> and some were prepared by dissolving UO<sub>3</sub> (Strem) in aqueous HClO<sub>4</sub>. The two sources of uranium yielded identical results. Solutions of  $UO_2^+$  were prepared photochemically from  $UO_2^{2+}$  and 2-propanol.<sup>7</sup>

The molar absorptivity of  $UO_2^{2+}$  at the 414-nm maximum in 0.1 M HClO<sub>4</sub> was determined to be 7.70 M<sup>-1</sup> cm<sup>-1</sup>, in good agreement with the published spectrum at 3 M ionic strength (HClO<sub>4</sub> + NaClO<sub>4</sub>).<sup>10</sup> The molar absorptivity of  $UO_2^+$  at the 255-nm maximum was

- (3) Hill, R. J.; Kemp, T. J.; Allen, D. M.; Cox, A. J. Chem. Soc., Faraday Trans. 1 1974, 70, 847.
- (4) Azenha, M. E. D. G.; Burrows, H. D.; Formosinho, S. J.; Miguel, M. G. M. J. Chem. Soc., Faraday Trans. 1 1989, 85, 2625.
- (5) Buchachenko, A. L.; Khudyakov, I. V. Acc. Chem. Res. 1991, 24, 177.
- (6) Batt, L. Int. Rev. Phys. Chem. 1987, 6, 53.
- (7) Howes, K. R.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1988, 27, 791.
- (8) Melton, J. D.; Espenson, J. H.; Bakac, A. Inorg. Chem. 1986, 25, 4104.
- (9) Huston, P.; Espenson, J. H.; Bakac, A. J. Am. Chem. Soc. 1992, 114, 9510.
- (10) Bell, J. T.; Biggers, R. E. J. Mol. Spectrosc. 1965, 18, 247.

© 1995 American Chemical Society

<sup>&</sup>lt;sup>®</sup> Abstract published in Advance ACS Abstracts, March 1, 1995.

<sup>(1)</sup> Balzani, V.; Bolletta, F.; Gandolfi, M. T.; Maestri, M. Top. Curr. Chem. 1978, 75, 1.

<sup>(2)</sup> Hoffman, M. Z.; Bolletta, F.; Moggi, L.; Hug, G. L. J. Phys. Chem. Ref. Data 1989, 18, 219.



**Figure 1.** Plot of  $k_{obs}$  against the concentration of  $[O_2]$  (plain squares) and  $0.5[UO_2^+]$  (crossed squares) according to eq 2.

redetermined. Under typical conditions in this work, 5 mM HClO<sub>4</sub>, 0.2 M 2-PrOH, and 0.02-1 mM UO<sub>2</sub><sup>+</sup>, the value is 770 M<sup>-1</sup> cm<sup>-1</sup>, somewhat higher than that reported earlier (660 M<sup>-1</sup> cm<sup>-1</sup>).<sup>7</sup>

The disproportionation of  $UO_2^+$  was negligibly slow on the time scale of most of the experiments. The acid concentration, 5 mM, was high enough to be considered essentially constant throughout each experiment. In several runs the concentration of HClO<sub>4</sub> was raised to 10 mM without measurable effect on the kinetics of the oxygenation reaction. The ionic strength was determined by the concentrations of HClO<sub>4</sub> and the uranium ions, which place it in the range 5–8 mM for most of the work. No additional electrolyte was used to control the ionic strength more precisely, because higher salt concentrations accelerate the second-order disproportionation of  $UO_2^+$  but should have minimal effect on the reaction of interest.<sup>11</sup> The latter point was confirmed in several experiments that had the ionic strength raised to 0.02 M with LiClO<sub>4</sub>.

Spectrophotometric titrations were carried out at the 255-nm maximum and 232-nm minimum in the  $UO_2^+$  spectrum. Most of the kinetic runs were monitored at 232 nm, where the absorbance increase (caused by the formation of  $UO_2^{2+}$ ) was greater than the absorbance decrease at 255 nm. In a typical experiment, an air-free (argon saturated) solution of  $UO_2^+$  was prepared in a 1-cm fluorescence quartz cell. The reaction with  $O_2$  was initiated by filling the cell to capacity with a measured amount of  $O_2$ -saturated 5 mM HClO<sub>4</sub>. All the kinetic experiments were carried out at 25 °C.

#### Results

**Stoichiometry.** Spectrophotometric titrations yielded the ratio  $\Delta[UO_2^+]/\Delta[O_2] = 2.05$  (232 nm) and 2.10 (255 nm), establishing that the reaction takes place as in eq 1. The yield

$$2UO_2^{+} + O_2 + 2H^+ \rightarrow 2UO_2^{2+} + H_2O_2$$
(1)

of  $H_2O_2$  was determined iodometrically. A solution that initially contained equimolar amounts of  $UO_2^+$  and  $O_2$  (1.06 × 10<sup>-4</sup> M) produced 4.9 × 10<sup>-5</sup> M H<sub>2</sub>O<sub>2</sub>, close to the expected value of 5.3 × 10<sup>-5</sup> M.

Kinetics of Autoxidation of  $UO_2^+$ . All the experiments were conducted under pseudo-first-order conditions using either  $UO_2^+$ or  $O_2$  in large excess over the other reagent. The kinetics were unaffected by changes in [H<sup>+</sup>] in the range 5–10 mM or by addition of up to 1 mM  $UO_2^{2+}$ . The pseudo-first-order rate constants are plotted against the concentration of excess reagent in Figure 1. Once the stoichiometric factor of 2 is taken into account, the data can be fitted to a single line with a slope of  $62.7 \pm 2.0 \text{ M}^{-1} \text{ s}^{-1}$ , eq 2.

$$-d[UO_2^+]/dt = -2d[O_2]/dt = 62.7[UO_2^+][O_2]$$
(2)

The reaction is expected to produce either  $HO_2^{\bullet}/O_2^{\bullet-}$  (pK<sub>a</sub> = 4.69)<sup>12</sup> or  $UO_2(HO_2)^{2+13,14}$  as intermediates, as discussed in detail later. In the meantime, the term intermediate will stand for all the forms of superoxide irrespective of the protonation state or the degree of complexation to  $UO_2^{2+1}$ .

The intermediate might either oxidize the second mole of  $UO_2^+$  or disproportionate. In both cases, the overall stoichiometry would remain 2:1, but the measured rate constants would be up to twice as large in the first scenario, as shown in Schemes 3 and 4.

## Scheme 3

$$UO_{2}^{+} + O_{2} \xrightarrow{k_{U}} UO_{2}^{2+} + Int (HO_{2}^{*}/O_{2}^{*-} \text{ or } UO_{2}(HO_{2}^{*})^{2+})$$
$$UO_{2}^{+} + Int \xrightarrow{H^{+}, \text{ fast}} UO_{2}^{2+} + H_{2}O_{2}$$
$$-d[UO_{2}^{+}]/dt = -2d[O_{2}]/dt = 2k_{U}[UO_{2}^{+}][O_{2}]$$

Scheme 4

$$UO_2^+ + O_2 \xrightarrow{k_U} UO_2^{2+} + Int (HO_2^{\bullet}/O_2^{\bullet-} \text{ or } UO_2(HO_2^{\bullet})^{2+})$$
  
Int  $\xrightarrow{\text{fast}} 0.5O_2 + 0.5H_2O_2$   
 $-d[UO_2^+]/dt = -2d[O_2]/dt = k_U[UO_2^+][O_2]$ 

Effect of  $Cu^{2+}$ . In order to obtain information on the nature and fate of the intermediate, a series of experiments were conducted in the presence of aquacopper(II) ions. The couple  $Cu^{2+/+}$  catalyzes the disproportionation of  $HO_2^{\bullet 15.16}$  as shown in eqs 3 and 4.

$$Cu^{2+} + HO_2^{\bullet} \rightleftharpoons Cu^+ + O_2^{\bullet} (+H^+)$$
 (3)

$$Cu^{+} + HO_{2}^{\bullet} \xrightarrow{H^{+}} Cu^{2+} + H_{2}O_{2}$$
 (4)

It is not known whether  $Cu^+$  and  $Cu^{2+}$  react with  $UO_2$ - $(HO_2^{\bullet})^{2+}$ , but it is reasonable to propose that they do. Even if this is not the case, copper ions will still catalyze the disproportionation of  $UO_2(HO_2^{\bullet})^{2+}$  by reacting with equilibrium amounts of free  $HO_2^{\bullet}/O_2^{\bullet-}$  produced in eq 5.<sup>13,14</sup>

$$UO_2^{2+} + HO_2^{\bullet} \underbrace{\stackrel{1.5 \times 10^{5} \text{ M}^{-1} \text{ s}^{-1}}{100 \text{ s}^{-1}} [UO_2(HO_2^{\bullet})^{2+}]$$
 (5)

If the reaction between  $UO_2^+$  and  $O_2$  takes place as in Scheme 3 ( $k_{obs} = 2k_U$ ), then  $Cu^{2+}$  should be able to compete with  $UO_2^+$  for the intermediate and slow down the reaction. In the limit of high [ $Cu^{2+}$ ] the rate constant would become  $k_U$ . If, on the other hand, the autoxidation reaction proceeds as in Scheme 4, then  $Cu^{2+}$  should have no effect on the kinetics.

- (12) Bielski, B. H. J. Photochem. Photobiol. 1978, 28, 645.
- (13) Meisel, D.; Czapski, G.; Samuni, A. J. Am. Chem. Soc. 1973, 95, 4148.
- (14) (a) Meisel, D.; Ilan, Y. A.; Czapski, G. J. Phys. Chem. 1974, 78, 2330.
  (b) Sullivan, J. C.; Gordon, S.; Cohen, D.; Mulac, W.; Schmidt, K. H. J. Phys. Chem. 1976, 80, 1684.
- (15) Rabani, J.; Klug-Roth, D.; Lilie, J. J. Phys. Chem. 1973, 77, 1169.
- (16) Kozlov, Y. N.; Berdnikov, V. M. Russ. J. Phys. Chem. (Engl. Transl.) 1973, 47, 338.

<sup>(11)</sup> Ekstrom, A. Inorg. Chem. 1974, 13, 2237.



**Figure 2.** Plot of the observed rate constants against  $[Cu^{2+}]$  for the reaction of  $UO_2^+$  (0.01–0.1 mM) with  $O_2$  (0.72 mM) in the presence of  $Cu^{2+}$  according to eq 10. At  $[Cu^{2+}] \ge 0.01$  mM, the catalytic reaction of eq 6 dominates. The straight line defined by the data in this concentration regime has a slope  $k_{cat} = 930 \text{ M}^{-1} \text{ s}^{-1}$  and an intercept (0.0228 s<sup>-1</sup>) that is only half the value measured in the absence of  $Cu^{2+}$ . At  $[Cu^{2+}] < 0.01$  mM, the uncatalyzed autoxidation prevails, with  $Cu^{2+}$  and  $UO_2^+$  competing for the intermediate. The observed rate constant for this path increases from  $k_U[O_2]$  ( $\alpha = 0$ ) to  $2k_U[O_2]$  ( $\alpha = 1$ ) as  $[Cu^{2+}]$  decreases to zero.

The study of the effect of  $Cu^{2+}$  on the kinetics of reaction 1 was complicated by the occurrence of a direct reaction between  $Cu^{2+}$  and  $UO_2^+$ , eq 6. In effect, this reaction provides a pathway for catalyzed autoxidation owing to the rapid reaction of  $Cu^+$  with  $O_2$ , regenerating  $Cu^{2+}$ , eq 7.<sup>17,18</sup>  $UO_2^+$  is now consumed in two parallel reactions, autoxidation, eq 1, and catalyzed autoxidation, eqs 6 and 7.

$$Cu^{2+} + UO_2^+ \xrightarrow{k_{cat}} Cu^+ + UO_2^{2+}$$
 (6)

$$\operatorname{Cu}^+ \xrightarrow{\operatorname{O}_2} \operatorname{Cu}^{2+}$$
 (7)

For a series of experiments using O<sub>2</sub> (0.72 mM) in a large excess over both UO<sub>2</sub><sup>+</sup> (0.01–0.1 mM) and Cu<sup>2+</sup> (0.01–0.05 mM), a plot of  $k_{obs}$  vs [Cu<sup>2+</sup>] is linear with a slope  $k_{cat} = 930$  M<sup>-1</sup> s<sup>-1</sup> and an intercept of 0.0228 s<sup>-1</sup>, Figure 2. The latter value represents only 51% of that measured in the absence of Cu<sup>2+</sup> (Figure 1), as would be expected if autoxidation takes place according to the mechanism in Scheme 3. The rate law for the stated conditions is given in eqs 8 and 9.

$$-d[UO_2^{+}]/dt = k_{obs}[UO_2^{+}]$$
(8)

$$k_{\rm obs} = k_{\rm U}[O_2] + k_{\rm cat}[Cu^{2^+}]$$
(9)

Additional data were collected at different concentrations of all three reagents, but always with  $O_2$  in excess over  $UO_2^+$ . The measured rate constants were corrected for the contribution from the catalytic path ( $k_{cat}[Cu^{2+}]$ ) and plotted against the concentration of  $O_2$ , Figure 3. For reasons that are not fully understood, the scatter was greater in experiments with added  $Cu^{2+}$ . This is particularly apparent in Figure 3, where each plotted value represents a difference between two comparable numbers. Also shown in Figure 3 are the rate constants for autoxidation that were measured in the absence of  $Cu^{2+}$ . The



**Figure 3.** Kinetics of disappearance of  $UO_2^+$  in the autoxidation reaction. The steeper line ( $k = 62.9 \text{ M}^{-1} \text{ s}^{-1}$ ) represents the plot of the directly measured values of  $k_{obs}$  against  $[O_2]$  in the absence of added  $Cu^{2+}$ . The rate constants obtained in the presence of  $Cu^{2+}$  were corrected for the catalytic path and also plotted against  $[O_2]$ . These data define the shallower line,  $k = 33.9 \text{ M}^{-1} \text{ s}^{-1}$ . The ratio of the two slopes is 1.86, close to the expected factor of 2.

**Table 1.** Summary of Kinetic Data for the Autoxidation of  $UO_2^+$  and Related Reactions<sup>*a*</sup>

| reaction                                                                                                  | rate constant/M <sup>-1</sup> s <sup>-1</sup>          |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $UO_2^+ + O_2 \rightarrow UO_2(O_2)^+$                                                                    | $k_{\rm U} = 31.4 \pm 1.0$                             |
| $\mathrm{UO_2}^+ + \mathrm{HO_2}^\bullet \xrightarrow{\mathrm{H}^+} \mathrm{UO_2}^{2+} + \mathrm{H_2O_2}$ | $5 \times 10^5 \le k_{\text{U-int}} \le 5 \times 10^7$ |
| $UO_2^+ + (NH_3)_5 CoCl^{2+} \xrightarrow{5H^+}$                                                          | $k_{\rm U-Co} = 10 \pm 1$                              |
| $UO_2^{2+} + Co^{2+} + 5NH_4^{+} + Cl^{-}$                                                                |                                                        |
| $UO_2^+ + Cu^{2+} \rightarrow UO_2^{2+} + Cu^+$                                                           | $k_{\rm cat} = 930^b$                                  |
|                                                                                                           | 900°                                                   |
|                                                                                                           | $av 915 \pm 15$                                        |
| $Cu^{2+} + HO_2^{\bullet} \xrightarrow{H^+} Cu^+ + H_2O_2$                                                | $k_3 = 5 \times 10^{7 d}$                              |
| $Cu^+ + O_2 \rightarrow Cu(O_2)^+$                                                                        | $k_{-3} = 9.5 \times 10^{5 e}$                         |

<sup>*a*</sup> 25 °C, [HClO<sub>4</sub>] = 5 mM, [2-PrOH] = 0.1-0.2 M. <sup>*b*</sup> O<sub>2</sub> used to scavenge Cu<sup>+</sup>. <sup>*c*</sup> (NH<sub>3</sub>)<sub>5</sub>CoCl<sup>2+</sup> used to scavenge Cu<sup>+</sup>. <sup>*d*</sup> Average of the values in refs 15, 16, and 21. <sup>*e*</sup> References 17 and 18.

straight lines defined by the two sets of data have slopes 62.9  $\pm$  1.2 M<sup>-1</sup> s<sup>-1</sup> ([Cu<sup>2+</sup>] = 0) and 33.9  $\pm$  1.3 M<sup>-1</sup> s<sup>-1</sup> ([Cu<sup>2+</sup>]  $\geq$  0.01 mM). The ratio of the two values, 1.86, is again close to 2 and confirms the earlier result that was obtained at a single O<sub>2</sub> concentration. The autoxidation of UO<sub>2</sub><sup>+</sup> is thus best described by Scheme 3 with  $k_U =$  31.4 M<sup>-1</sup> s<sup>-1</sup>, Table 1.

As shown, even low concentrations of  $Cu^{2+}$  ( $\geq 0.01 \text{ mM}$ ) cut the rate constant by a factor of 2, indicating that  $UO_2^+$  (0.01 - 0.10 mM) reacts with the intermediate more slowly than  $Cu^{2+}$ does. It should be possible to decrease the ratio  $[Cu^{2+}]/[UO_2^+]$  to the point where the two metal ions compete for the intermediate. In this regime the rate constant for uncatalyzed autoxidation is  $(1 + \alpha)k_U$ , eq 10, where  $\alpha$  represents the fraction of the intermediate that reacts with  $UO_2^+$ ,  $0 \leq \alpha \leq 1$ , eqs 11 and 12. The rate constants for the reaction of the intermediate with  $Cu^{2+}$  and  $UO_2^+$  are denoted  $k_{Cu-int}$  and  $k_{U-int}$ , respectively.

As predicted, at low concentrations of  $Cu^{2+}$ , where the catalytic path is negligible, a decrease in  $[Cu^{2+}]$  causes an increase in the observed rate constant, Figure 2. This is illustrated by the turnabout in the  $k_{obs} vs$   $[Cu^{2+}]$  plot at  $\leq 0.01$  mM  $Cu^{2+}$ .

The data were then fitted to eq 12, which contains the two unknown rate constants,  $k_{\text{Cu-int}}$  and  $k_{\text{U-int}}$ . Because the kinetic data were obtained in experiments that had UO<sub>2</sub><sup>+</sup> as limiting reagent, the values of  $k_{\text{obs}}$  in eq 12 were calculated from the

<sup>(17)</sup> Zuberbühler, A. D. Helv. Chim. Acta 1970, 53, 473.

<sup>(18)</sup> Mi, L.; Zuberbühler, A. D. Helv. Chim. Acta 1991, 74, 1679.



Figure 4. Plot of the left-hand side of eq 12 against the ratio  $[Cu^{2+}]/[UO_2^+]$ . The experiments had  $[O_2] = 0.72$  mM,  $[UO_2^+] = 0.01-0.1$  mM, and  $[Cu^{2+}] = 0-5$  mM.

$$k_{\rm obs} = (1 + \alpha)k_{\rm U}[O_2] + k_{\rm cat}[Cu^{2+}]$$
 (10)

$$\alpha = \frac{k_{\text{U-int}}[\text{UO}_2^+]_{\text{av}}}{k_{\text{U-int}}[\text{UO}_2^+]_{\text{av}} + k_{\text{Cu-int}}[\text{Cu}^{2^+}]} = \frac{1}{1 + \frac{k_{\text{Cu-int}}[\text{Cu}^{2^+}]}{k_{\text{U-int}}[\text{UO}_2^+]_{\text{av}}}}$$
(11)

$$\frac{k_{\rm obs} - k_{\rm cat}[{\rm Cu}^{2^+}] - k_{\rm U}[{\rm O}_2]}{k_{\rm U}[{\rm O}_2]} = \frac{1}{1 + \frac{k_{\rm Cu-int}[{\rm Cu}^{2^+}]}{k_{\rm U-int}[{\rm UO}_2^+]_{\rm av}}}$$
(12)

first 20% of the reaction, and the concentrations of  $UO_2^+$  were averaged over the same fraction of the reaction. The data fit, Figure 4, yielded the ratio  $k_{Cu-int}/k_{U-int} = 20 \pm 7$ .

Although far from ideal, the conditions chosen for these experiments were necessary to ensure that  $O_2$  is the active oxidant and  $Cu^{2+}$  the catalyst. Had  $UO_2^+$  been used in excess so as to keep its concentration essentially constant throughout each kinetic run, the direct  $UO_2^+-Cu^{2+}$  reaction ( $k_{cat} = 930$   $M^{-1} s^{-1}$ ) would overshadow the  $UO_2^+-O_2$  reaction ( $k_U = 31.4$   $M^{-1} s^{-1}$ ). The data obtained under such conditions would not be useful in determining the reactivity of  $Cu^{2+}$  and  $UO_2^+$  toward the intermediate produced in the  $UO_2^+-O_2$  reaction.

The reaction of  $UO_2^+$  with  $Cu^{2+}$  was presumed responsible for  $Cu^{2+}$  catalysis of the autoxidation of  $UO_2^+$ , and the rate constant  $k_{cat} = 930 \text{ M}^{-1} \text{ s}^{-1}$  was assigned to this step. To confirm this assignment, the kinetics of reaction 6 were studied directly under air-free conditions. From a single experiment using  $Cu^{2+}$  (0.05 mM) in excess over  $UO_2^+$ , a second-order rate constant of ~870 M<sup>-1</sup> s<sup>-1</sup> was calculated. However, when the range of concentrations was extended to higher [ $Cu^{2+}$ ], it became apparent that the plot of  $k_{obs} vs$  [ $Cu^{2+}$ ] is either nonlinear or has a nonzero intercept. A straight line drawn through the data has a slope of 600 M<sup>-1</sup> s<sup>-1</sup>, significantly less than 930 M<sup>-1</sup> s<sup>-1</sup> that was obtained under catalytic conditions. Also, added  $UO_2^{2+}$  slows down the air-free reaction but has no effect on the catalytic reaction.

We note that the reduction potentials<sup>19</sup> for the two couples involved,  $Cu^{2+/+}$  (0.159 V) and  $UO_2^{2+/+}$  (0.163 V), are comparable, which should lead to less than quantitative reaction



**Figure 5.** Plot of pseudo-first-order rate constants against [Cu<sup>2+</sup>] for the reaction of Cu<sup>2+</sup> (0.02–0.07 mM) with UO<sub>2</sub><sup>+</sup> (0.1–0.2 mM) in the presence of 0.25–0.5 mM (NH<sub>3</sub>)<sub>5</sub>CoCl<sup>2+</sup> in Ar-saturated solutions. In these experiments Cu<sup>2+</sup> is not consumed but instead acts as a catalyst for the UO<sub>2</sub><sup>+-</sup> (NH<sub>3</sub>)<sub>5</sub>CoCl<sup>2+</sup> reaction.

and equilibration kinetics. Under such conditions, an excess of  $UO_2^{2+}$  should increase the rate constant, contrary to the observations. It is possible that  $Cu^+$  reacts with both  $UO_2^+$  and  $UO_2^{2+}$  and also that it disproportionates. It is difficult to predict what effect, if any, small (but unobserved) quantities of  $Cu^0$  may have on the reaction.

We did not explore these possibilities further, because they do not bear on the study of the autoxidation of  $UO_2^+$ . In  $O_2^$ containing solutions all the  $Cu^+$  is rapidly oxidized back to  $Cu^{2+}$ , and the rate constant calculated from the data in Figure 2 should be the true  $k_{cat}$ , if Cu<sup>+</sup> is indeed responsible for the complexities observed under air-free conditions. This hypothesis was tested by conducting the reaction of  $Cu^{2+}$  with  $UO_2^+$  in the presence of (NH<sub>3</sub>)<sub>5</sub>CoCl<sup>2+</sup>, another scavenger for Cu<sup>+</sup> ( $k_{Cu-Co} = 4.9 \times$  $10^4 \text{ M}^{-1} \text{ s}^{-1}$ ).<sup>20</sup> The reaction was well behaved and obeyed first-order kinetics under conditions of excess Cu<sup>2+</sup> and (NH<sub>3</sub>)<sub>5</sub>-CoCl<sup>2+</sup>. The observed rate constants were corrected for a small (2-12%) contribution from the direct oxidation of UO<sub>2</sub><sup>+</sup> by  $(NH_3)_5 CoCl^{2+}$   $(k_{U-C_0} = 10 M^{-1} s^{-1} was determined in$ independent experiments). Such corrected rate constants showed no dependence on the concentrations of (NH<sub>3</sub>)<sub>5</sub>CoCl<sup>2+</sup>, consistent with a scheme where the only role of  $(NH_3)_5CoCl^{2+}$  is to reoxidize Cu<sup>+</sup> formed in reaction 6. The plot of the corrected rate constants against [Cu<sup>2+</sup>], Figure 5, is a straight line with a zero intercept and a slope of 900  $M^{-1}$  s<sup>-1</sup>, in excellent agreement with the value obtained in experiments on catalytic autoxidation of  $UO_2^+$  (930 M<sup>-1</sup> s<sup>-1</sup>). This result establishes that the reaction of eq 6 is indeed rate determining in the  $Cu^{2+}$ -catalyzed autoxidation of  $UO_2^+$ .

**Reaction of UO<sub>2</sub><sup>+</sup> with HO<sub>2</sub>'/O<sub>2</sub><sup>•-</sup>.** Several unsuccessful attempts were made to study the kinetics of this reaction. HO<sub>2</sub>'/O<sub>2</sub><sup>•-</sup> was generated by UV photolysis of H<sub>2</sub>O<sub>2</sub> in O<sub>2</sub>-saturated solutions containing formate and in air-free solutions containing large concentrations of H<sub>2</sub>O<sub>2</sub>. In the former case, the intermediates involved are HO<sup>•</sup>  $\rightarrow$  CO<sub>2</sub><sup>•-</sup>  $\rightarrow$  HO<sub>2</sub>'/O<sub>2</sub><sup>•-</sup>, and in the latter, HO<sup>•</sup>  $\rightarrow$  HO<sub>2</sub>'/O<sub>2</sub><sup>•-</sup>. The chemistry involved is well-known<sup>21</sup> and will not be discussed here. Both methods failed in the presence of uranium ions, which form complexes with both

(20) Parker, O. J.; Espenson, J. H. J. Am. Chem. Soc. 1969, 91, 1968.

<sup>(19)</sup> Standard Potentials in Aqueous Solution; Bard, A. J., Parsons, R., Jordan, J., Eds.; Marcel Dekker: New York, 1985.

<sup>(21)</sup> Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. J. Phys. Chem. Ref. Data 1985, 14, 1041.

 $H_2O_2$  and  $HCO_2^-$ , resulting in a complex mixture of uranium species and inordinately large absorbances in the UV. Yet another method involved the photolysis of  $Ru(bpy)_3^{2+}$  in the presence of  $MV^{2+}$  and  $O_2^{,22}$  In this scheme  $UO_2^+$  and  $Ru(bpy)_3^{3+}$  compete for  $HO_2^{\bullet}$ . Unfortunately, the kinetic behavior of the system was more complex than expected, presumably because of the direct reaction between the two competitors.

The ESR detection of HO<sub>2</sub> and/or UO<sub>2</sub>(HO<sub>2</sub>)<sup>2+</sup> in frozen solution was not successful, presumably because of the low steady state concentrations of these intermediates.

#### Discussion

The standard reduction potentials<sup>19</sup> and self-exchange rate constants are available for the couples  $O_2/O_2^{\bullet-}$  ( $E^{\circ} = -0.16$  V and  $1 \le k_{self} \le 10$  M<sup>-1</sup> s<sup>-1 23,24</sup>) and UO<sub>2</sub><sup>2+/+</sup> ( $E^{\circ} = 0.16$  V and  $1 \le k_{self} \le 15$  M<sup>-1</sup> s<sup>-1 7</sup>). With use of these parameters, one estimates  $0.002 \le k_{13} \le 0.02$  M<sup>-1</sup> s<sup>-1</sup> for the thermodynamically unfavorable ( $K = 4 \times 10^{-6}$ ) outer-sphere process of eq 13a. The measured rate constant for autoxidation,  $k_U = 31.4$  M<sup>-1</sup> s<sup>-1</sup>, exceeds this value by more than 3 orders of magnitude, seemingly ruling out reaction 13a as a major pathway. More likely, the reaction yields initially a uranium–dioxygen intermediate, probably a superoxouranium(VI) complex, eq 13b, followed by rapid steps that ultimately consume an additional mole of UO<sub>2</sub><sup>+</sup>.

$$\mathrm{UO_2}^+ + \mathrm{O_2} \rightarrow \mathrm{UO_2}^{2+} + \mathrm{O_2}^{--} \qquad (13a)$$

$$\mathrm{UO_2}^+ + \mathrm{O_2} \rightarrow [\mathrm{U}^{\mathrm{VI}}\mathrm{O_2}[\mathrm{O_2}^{-\bullet})]^+ \qquad (13b)$$

It is tempting to propose that the intermediate is the conjugate base of the known species that was previously generated from  $UO_2^{2+}$  and  $HO_2^{\bullet}$ , eq 5.<sup>13.14</sup> If so, the rapid protonation of  $[U^{VI}O_2(O_2^{\bullet-})]^+$  will convert it to  $[UO_2(HO_2^{\bullet})^{2+}]$ . The acid concentration (0.1 M HClO<sub>4</sub>) employed in the study of  $[UO_2(HO_2^{\bullet})^{2+}]^{13.14}$  is admittedly higher than that in the present study (5–10 mM), but this change in pH is not expected to change significantly the nature of the species.

 $[UO_2(HO_2^{\bullet})]^{2+}$  will oxidize the second mole of  $UO_2^+$  either in a direct reaction, eq 14a, or by prior dissociation of  $HO_2^{\bullet}$ , followed by  $UO_2^+-HO_2^{\bullet}$  reaction, eq 5 and 14b.

$$UO_2^+ + [UO_2(HO_2^{\bullet})]^{2+} \xrightarrow{H^+} 2UO_2^{2+} + H_2O_2$$
 (14a)

$$\mathrm{UO}_{2}^{+} + \mathrm{HO}_{2}^{\bullet} \xrightarrow{\mathrm{H}^{+}} \mathrm{UO}_{2}^{2+} + \mathrm{H}_{2}\mathrm{O}_{2} \qquad (14\mathrm{b})$$

At  $\leq 0.05 \text{ mM UO}_2^+$ , a rate constant  $k_{14a} \geq 2 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ would be required for 90% of  $[\text{UO}_2(\text{HO}_2^{\bullet})]^{2+}$  to react directly with UO<sub>2</sub><sup>+</sup> rather than dissociate  $(k_{-5} = 100 \text{ s}^{-1})$ . In that case copper ions must also react with  $[\text{UO}_2(\text{HO}_2^{\bullet})]^{2+}$ , given that they compete for the intermediate 20 times more efficiently than UO<sub>2</sub><sup>+</sup> does. This ratio, and low concentrations of Cu<sup>2+</sup> in these experiments ( $\leq 0.01 \text{ mM}$ ), would place the rate constant for the reaction of Cu<sup>2+</sup> with  $[\text{UO}_2(\text{HO}_2^{\bullet})]^{2+}$  at  $\geq 2.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ , some 25–100 times faster than the reaction of Cu<sup>2+</sup> with HO<sub>2</sub><sup>•,15,16</sup> We consider this unlikely, because coordinated HO<sub>2</sub><sup>•</sup> should not be a more reactive *reductant* than the free radical. Thus, at least at  $\leq 0.05$  mM UO<sub>2</sub><sup>+</sup>, we prefer a mechanism whereby  $[UO_2(HO_2^{\bullet})]^{2+}$  dissociates to yield HO<sub>2</sub><sup>•</sup>, which in turn reacts with UO<sub>2</sub><sup>+</sup>.

The same argument, and using  $k = 5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$  (an average of the published values) for the reaction of Cu<sup>2+</sup> with HO<sub>2</sub><sup>•</sup>, <sup>15,16,21</sup> leads us to conclude that the intermediate reacting with low concentrations of Cu<sup>2+</sup> is also free HO<sub>2</sub><sup>•</sup>, at least in the concentration range where the competition ratio  $k_{\text{Cu-int}}/k_{\text{U}}$ . int = 20 was determined. Under these conditions the mechanism is as given in Scheme 5.

#### Scheme 5

$$UO_{2}^{+} + O_{2} \xrightarrow{31.4} [U^{VI}O_{2}(O_{2}^{\bullet-})]^{+} \xrightarrow{H^{+}, \text{ fast}} UO_{2}^{2+} + HO_{2}^{\bullet}$$
(V-1)

$$HO_2^{\bullet} + Cu^{2+} \stackrel{-H^+}{\longleftrightarrow} Cu^+ + O_2$$
(3)

$$\mathrm{HO}_{2}^{\bullet} + \mathrm{UO}_{2}^{+} \xrightarrow{\mathrm{H}^{+}} \mathrm{UO}_{2}^{2^{+}} + \mathrm{H}_{2}\mathrm{O}_{2} \qquad (14b)$$

$$HO_2^{\bullet} + Cu^+ \xrightarrow{H^-, 2.3 \times 10^9} Cu^{2+} + H_2O_2$$
(4)

We cannot rule out a direct reaction between  $[UO_2(HO_2^{\bullet})]^{2+}$ and  $UO_2^+$ , eq 14a, in experiments with excess  $UO_2^+ (\leq 1 \text{ mM})$ . Under such conditions, a rate constant required for this path to dominate completely over the dissociation of  $HO_2^{\bullet}$  is  $\geq 1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ . Similarly, a direct reaction between  $Cu^{2+}$  and  $[UO_2(HO_2^{\bullet})]^{2+}$  may take place at high  $[Cu^{2+}] (\geq 0.01 \text{ mM})$ .

The ratio  $k_{\text{Cu-int}}/k_{\text{U-int}}$  (20) does not simply reflect the relative reactivity of HO<sub>2</sub>\* toward Cu<sup>2+</sup> and UO<sub>2</sub><sup>+</sup> in Scheme 5. Rather,  $k_{\text{Cu-int}}$  represents the overall rate constant for catalytic disproportionation of HO<sub>2</sub>\* and thus depends on the rates of both reactions 3 and 4. Despite the smaller rate constant, reaction 3 is probably the faster of the two, given the concentration advantage of Cu<sup>2+</sup>. The scheme is even more complicated by the involvement of another superoxometal complex, Cu(O<sub>2</sub>)<sup>+</sup>, an intermediate in reaction 3. Significant fractions of Cu<sup>2</sup> and HO<sub>2</sub>\* may,<sup>17,18</sup> and probably do, exist in the form of Cu(O<sub>2</sub>)<sup>+</sup> under our experimental conditions, which makes the calculation of  $k_{\text{U-int}}$  from  $k_{\text{Cu-int}}/k_{\text{U-int}}$  unreliable. Indeed, calculations that treated Cu<sup>+</sup> and HO<sub>2</sub>\* as steady state intermediates but ignored Cu(O<sub>2</sub>)<sup>+</sup> yielded unreasonably low values for  $k_{\text{U-int}}$ .

Still, the upper and lower limits for  $k_{U-int}$  can be estimated. The reaction of  $UO_2^+$  with  $HO_2^{\bullet}$  has to be much faster than disproportionation of HO<sub>2</sub>•  $(k = 1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1} \text{ at 5 mM H}^+)^{21}$ under conditions in Figure 1, i.e.  $10^{6}[HO_{2}] < k_{U-int}[UO_{2}]$ . From this inequality and treating HO<sub>2</sub>• as a steady-state intermediate, we obtain  $k_{\text{U-int}} > 5 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ . The other limit is set by the requirement that 0.01 mM Cu<sup>2+</sup> react with the intermediate much faster than  $0.01 \text{ mM UO}_2^+$  does, Figure 4. No matter how complicated the subsequent chemistry, the competition between  $\overline{Cu}^{2+}$  and  $UO_2^+$  has to favor  $Cu^{2+}$ . This leads to  $k_{U-int}$  $< 5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ . Note that the rate constant at the midpoint of the range,  $5 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$ , is close to  $3 \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$ , the value one calculates from  $k_{Cu-int}/k_{U-int}$ . Thus despite the complicated mechanism, it appears that the competition between the major species,  $Cu^{2+}$  and  $UO_2^+$ , at the very first branching point determines the course of the reaction.

### Conclusions

The autoxidation of  $UO_2^+$  takes place with a stoichiometry  $[UO_2^+]:[O_2] = 2:1$  and produces  $UO_2^{2+}$  and  $H_2O_2$  quantitatively.

<sup>(22)</sup> Mulazzani, Q. G.; Ciano, M.; D'Angelantonio, M.; Venturi, M.; Rodgers, M. A. J. J. Am. Chem. Soc. 1988, 110, 2451.

<sup>(23)</sup> Zahir, K.; Espenson, J. H.; Bakac, A. J. Am. Chem. Soc. 1988, 110, 5059.

<sup>(24)</sup> Lind, J.; Shen, X.; Merenyi, G.; Jonsson, B. O. J. Am. Chem. Soc. 1989, 111, 7654.

The initial step has a rate constant  $k_{\rm U} = 31.4 \ {\rm M}^{-1} \ {\rm s}^{-1}$  and produces UO<sub>2</sub>(HO<sub>2</sub>\*)<sup>2+</sup>, which dissociates rapidly to UO<sub>2</sub><sup>2+</sup> and HO<sub>2</sub>\*. In the second, rapid step either HO<sub>2</sub>\* or UO<sub>2</sub>(HO<sub>2</sub>\*)<sup>2+</sup> oxidizes an additional mole of UO<sub>2</sub><sup>+</sup>. Cu<sup>2+</sup> exerts a dual effect on the reaction. When present at low concentrations (<10<sup>-5</sup> M), Cu<sup>2+</sup> slows down the reaction by scavenging HO<sub>2</sub>\* and/or UO<sub>2</sub>(HO<sub>2</sub>\*)<sup>2+</sup> and changing the stoichiometry of autoxidation to 1:1. At concentrations above 1 × 10<sup>-5</sup> M, Cu<sup>2+</sup> catalyzes the reaction by opening a new pathway whereby UO<sub>2</sub><sup>+</sup> reduces  $Cu^{2+}$  to  $Cu^+$ , which is then rapidly reoxidized by O<sub>2</sub>. Even in the absence of catalysis, the autoxidation of  $UO_2^+$  is fast enough to make  $UO_2^{2+}$  a good candidate for catalyst in photocatalytic oxygenation reactions.

Acknowledgment. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, under Contract W-7405-Eng-82. IC941429S